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1. Introduction and Preliminaries

In 2015, Khojasteh et al. [4] gave a new approach to study fixed point results

in the framework of metric spaces via simulation function as follows:

A mapping ζ : [0,+∞)2 → R is called a simulation function if it satisfies the

following:

(ζ1) ζ (0, 0) = 0;

(ζ2) ζ (t, s) < s− t for all t, s > 0;

(ζ3) if {tn} , {sn} are sequences in (0,+∞) such that lim
n→∞

tn = lim
n→∞

sn > 0,

then lim
n→∞

ζ (tn, sn) < 0.

Also, they denoted the set of all simulation functions by Z.

It is worth noticing that Argoubi et al. [1] revised the above definition by

withdrawing the condition (ζ1) (also, see [7]). Also, Roldan et al. [8] revised

(ζ3) by taking tn < sn. Hence, we can say that a mapping ζ : [0,+∞)2 → R is

called a simulation function if it satisfies:

(ζ2) ζ (t, s) < s− t for all t, s > 0;

(ζ3) if {tn} , {sn} are sequences in (0,+∞) such that lim
n→∞

tn = lim
n→∞

sn > 0

and tn < sn for all n ∈ N, then lim
n→∞

ζ (tn, sn) < 0.

For several examples of simulation functions, see [1, 2, 4, 6, 7, 8].

Definition 1.1. [4] Let (X, d) be a metric space and ζ ∈ Z. Then a mapping

T : X → X is called a Z-contraction with respect to ζ if the following condition

is satisfied:

ζ (d (Tx, Ty) , d (x, y)) ≥ 0 ∀x, y ∈ X. (1.1)

Now, it is clear that ζ (t, t) < 0 when t > 0; further (1.1) implies that

d (Tx, Ty) < d (x, y) when x 6= y for each x, y ∈ X. This means that each

Z-contraction with respect to ζ is continuous.

Theorem 1.2. [4] Let (X, d) be a complete metric space and T : X → X be

a Z-contraction with respect to ζ. Then T has a unique fixed point in X and

for every x0 ∈ X, the Picard sequence {xn}, where xn = Txn−1 for all n ∈ N,

converges to the fixed point of T .

One very important and significant kind of generalized (standard) metric

spaces are so-called b-metric spaces (or metric type spaces). Namely, (X, d)

is b-metric space if X 6= ∅ and d : X × X → [0,+∞) be a mapping such

that for all x, y, z ∈ X hold: d (x, y) = 0 ⇔ x = y; d (x, y) = d (y, x) and

d (x, y) ≤ b (d (x, y) + d (y, z)) for b ≥ 1. Then d is called b−metric. For more

details on b-metric spaces, see [2, 3, 5] and the references contained therein.

Recently, Demma et al. [2] introduced the b-simulation function in the

framework of b-metric spaces as follows.

Definition 1.3. Let (X, d) be a b-metric space. A b-simulation function is a

function ζ : [0,+∞)2 → R satisfying the following:
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(ξ1) ξ (t, s) < s− t for all t, s > 0;

(ξ2) if {tn} , {sn} are sequences in (0,+∞) such that

0 < lim
n→+∞

tn ≤ limn→+∞sn ≤ limn→∞sn ≤ b lim
n→+∞

tn < +∞, (1.2)

then lim
n→∞

ξ (btn, sn) < 0.

It is clear if b = 1, then b-simulation function is in the fact the simulation

function in the framework of (standard) metric spaces.

Example 1.4. [2] Let ξ : [0,+∞)2 → R be defined by

(i) ξ (t, s) = λs− t for all t, s ∈ [0,+∞), where λ ∈ [0, 1).

(ii) ξ (t, s) = ψ (s) − ϕ (t) for all t, s ∈ [0,+∞), where ϕ,ψ : [0,+∞) →
[0,+∞) are two continuous functions such that ψ (t) = ϕ (t) = 0 if and only if

t = 0 and ψ (t) < t ≤ ϕ (t) for all t > 0.

(iii) ξ (t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,+∞), where f, g : [0,+∞)2 →

(0,+∞) are two continuous functions with respect to each variable such that

f (t, s) > g (t, s) for all t, s > 0.

(iv) ξ (t, s) = s−ϕ (s)−t for all t, s ∈ [0,+∞), where ϕ : [0,+∞)→ [0,+∞)

is a lower semi-continuous function such that ϕ (t) = 0 if and only if t = 0.

(v) ξ (t, s) = sϕ (s) − t for all t, s ∈ [0,+∞), where ϕ : [0,+∞) → [0, 1) is

such that lim
t→r+

ϕ (t) < 1 for all r > 0.

Each of the function considered in (i)-(v) is a b-simulation function.

The following important and very interesting results are proved in [2].

Lemma 1.5. Let (X, d) be a b-metric space and f : X → X be a mapping.

Suppose that there exists a b-simulation function ξ such that following condition

holds.

ξ (bd (fx, fy) , d (x, y)) ≥ 0 ∀x, y ∈ X. (1.3)

Let {xn} be a sequence of Picard of initial at point x0 ∈ X and xn−1 6= xn for

all n ∈ N. Then

lim
n→∞

d (xn−1, xn) = 0.

Lemma 1.6. Let (X, d) be a b-metric space and f : X → X be a mapping.

Suppose that there exists a b-simulation function ξ such that (1.3) holds. Let

{xn} be a sequence of Picard of initial at point x0 ∈ X and xn−1 6= xn for all

n ∈ N. Then {xn} is a bounded sequence.

Lemma 1.7. Let (X, d) be a b-metric space and f : X → X be a mapping.

Suppose that there exists a b-simulation function ξ such that (1.3) holds. Let

{xn} be a sequence of Picard of initial at point x0 ∈ X and xn−1 6= xn for all

n ∈ N. Then {xn} is a Cauchy sequence.
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Theorem 1.8. Let (X, d) be a complete b-metric space and let f : X → X be

a mapping. Suppose that there exists a b-simulation function ξ such that (1.3)

holds; that is,

ξ (bd (fx, fy) , d (x, y)) ≥ 0 ∀x, y ∈ X.
Then f has a unique fixed point.

For the proof of Theorem 1.8, Demma et al. [2] used Lemmas 1.5-1.7.

2. Main results

In this section we improve the main result from [2]; that is, we prove The-

orem 1.8 without using all three lemmas 1.5-1.7. At the first, we quote some

well known results from b-metric spaces. The following lemma was used (and

proved) in the course of proofs of several fixed point results in the framework

of b-metric spaces in [3].

Lemma 2.1. Let {yn} be a sequence in a b-metric space (X, d) such that

d (yn, yn+1) ≤ λd (yn−1, yn) (2.1)

for some λ, 0 ≤ λ < 1
b and each n = 1, 2, · · · . Then {yn} is a Cauchy sequence

in (X, d).

By utilizing Lemma 2.1, Jovanović et al. [3] proved following result.

Theorem 2.2. Let (X, d) be a complete b-metric space and f : X → X be a

map such that

d (fx, fy) ≤ λd (x, y) (2.2)

holds for all x, y ∈ X, where 0 ≤ λ < 1
b . Then f has a unique fixed point z and

for every x0 ∈ X, the sequence {fnx0} converges to z.

Now we formulate and prove Theorem 1.8 via a shorter and simple approach.

Theorem 2.3. Let (X, d) be a complete b-metric space and f : X → X be a

mapping. Suppose that there exists a b-simulation function ξ such that (1.3)

holds; that is,

ξ (bd (fx, fy) , d (x, y)) ≥ 0 ∀x, y ∈ X. (2.3)

Then f has a unique fixed point.

Proof. It is enough clear that (2.3) implies

bd (fx, fy) ≤ d (x, y) ∀x, y ∈ X. (2.4)

Indeed, (2.4) holds if x = y. In the case that x 6= y there are two possibilities,

either fx = fy or fx 6= fy. In the first case we have that b · d (fx, fy) = 0 <

d (x, y), while in second case the result follows from (ξ1). This means that (2.3)

implies (2.4) for all x, y ∈ X. Further, obviously, (2.4) implies that

d
(
f2x, f2y

)
≤ 1

b2
d (x, y) = λd (x, y) . (2.5)
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Since λ = 1
b2 ∈ [0, 1

b ), then according to Theorem 2.2, f2 has a unique fixed

point (say z) in X. This further means that f has a unique fixed point z in X.

Now, the proof of this theorem is complete. �

Obviously, our proof is much shorter than the corresponding ones from

Demma et al.’s work [2]. It is very interesting that all four Corollaries 4.1-

4.4 from [2] follows immediately according to our easy approach. Thus we have

following corollary.

Corollary 2.4. Let (X, d) be a complete b-metric space and let f : X → X be

a mapping. Suppose that

(i) λ ∈ [0, 1) such that bd (fx, fy) ≤ λd (x, y);

(ii) a lower semi-continuous function ϕ : [0,+∞)→ [0,∞) with ϕ−1(0) =

{0} such that bd (fx, fy) ≤ d (x, y)− ϕ (d (x, y));

(iii) ϕ : [0,+∞) → [0, 1) with lim
t→r+

ϕ (t) < 1 for all r > 0 such that

bd (fx, fy) ≤ ϕ (d (x, y)) d (x, y);

(iv) η : [0,+∞)→ [0,∞) with η (t) < t for all t > 0 and η(0) = 0 such that

bd (fx, fy) ≤ η (d (x, y))

for all x, y ∈ X. Then f has a unique fixed point in each one of above condition.

Proof. Obviously, each one of mentioned conditions implies the condition (2.4)

by selecting the appropriate b-simulation function in Example 1.4. Hence, we

obtain that bd (fx, fy) ≤ d (x, y) for all x, y ∈ X. The result then follows

according to Theorem 2.3. �

Example 2.5. Now, we consider Example 4.5 from [2]. Let X = [0, 1] and

d : X × X → R be defined by d (x, y) = |x− y|2 . Then (X, d) is a complete

b-metric space with b = 2. Consider a mapping f : X → X by

fx =
ax

1 + x

for all x ∈ X, where a ∈ [0, 1√
2
]. Now, we have

2d (fx, fy) = 2

∣∣∣∣ ax

1 + x
− ay

1 + y

∣∣∣∣2 = 2a2 |x− y|2

(1 + x)
2

(1 + y)
2 ≤ |x− y|

2
= d (x, y)

(2.6)

for all x, y ∈ X. Further, (2.6) implies that

d
(
f2x, f2y

)
≤ 1

4
d (x, y) ;

that is, f2 has a unique fixed point according to Theorem 2.2. This means that

f has a unique fixed point. Here it is z = 0.

The next result is probably known, but our proof is very condensed.
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Theorem 2.6. Let (X, d) be a complete b-metric space and let f : X → X be

a mapping such that

d (fx, fy) ≤ λd (x, y) (2.7)

for all x, y ∈ X, where λ ∈ [0, 1). Then f has a unique fixed point (say z) in

X and for x0 ∈ X the sequence {fnx0}n∈N converges to z.

Proof. The condition (2.7) implies that

d (fnx, fny) ≤ λd
(
fn−1x, fn−1y

)
≤ · · · ≤ λnd (x, y)

for all x, y ∈ X and n ∈ N. Since λn → 0 as n→∞, there is k ∈ N such that

λk < 1
b . Therefore, we have

d
(
fk+1x, fk+1y

)
≤ 1

b2
d (x, y) .

The result now follows by Theorem 2.2. �

Question 1. Does Theorem 2.3 holds if ξ (d (fx, fy) , d (x, y)) ≥ 0 for all

x, y ∈ X, where (X, d) is a given complete b-metric space and f : X → X be

a mapping and ξ a given b-simulation function?

Question 2. Can you obtain this results by considering ordered b-metric

spaces or cone b-metric spaces instead of b-metric spaces?
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